

Date : 25/09/2024

ANANDALAYA PERIODIC TEST – 2 Class: IX

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory.
- 2. Section A has 18 MCQ's and 02 Assertion Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA) type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub-parts.
- 7. All Questions are compulsory. However, an internal choice in 2 questions of 2 marks, 2 questions of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION A

	SECTION A									
1.	Two lines AB and CB intersect at O. If $\angle AOC = 70^{\circ}$, then value of $\angle BOD = $	(1)								
	(A) 20° (B) 60° (C) 70° (D) 110°									
2.	The section formed by horizontal and vertical lines determining the position of the point in a Cartesian plane is known as (A) Origin (B) $X - axis$ (C) Y-axis (D) Quadrants									
	(A) Origin (B) $A = axis$ (C) $1 = axis$ (D) Quadrants									
3.	Axioms are assumed(A) universal truths in all branches of mathematics(B) theorems(C) universal truths specific to geometry(D) definitions	(1)								
4.	What is the measure of an angle whose measure is 32° less than its supplement? (A) 148° (B) 158° (C) 68° (D) 58°	(1)								
5.	The decimal expansion of an irrational number is?(A) Terminating Decimal(B) Recurring Decimal(C) Either Terminating or Non- Terminating(D) Non- Terminating and Non- Recurring									
6.	In which quadrant, will the point lies, if the ordinate is -2 and the abscissa is -3 ? (A) I (B) II (C) III (D) IV	(1)								
7.	Calculate the perimeter of a rectangle whose area is $x^2 - 7x + 10$. (A) $(4x - 14)$ (B) $(2x - 7)$ (C) $(x - 2)(x - 5)$ (D) $(2x + 7)$	(1)								
8.	Which linear equation is having solutions $(-2, 2)$, $(0, 0)$ and $(2, -2)$. (A) $y = -x$ (B) $y = x$ (C) $y = 2x$ (D) $x = -2y$	(1)								
9.	If $AB = QR$, $BC = PR$ and $CA = PQ$, which congruency is state true?(A) $\triangle ABC \cong \triangle PQR$ (B) $\triangle CBA \cong \triangle PRQ$ (C) $\triangle BAC \cong \triangle RPQ$ (D) $\triangle PQR \cong \triangle BCA$	(1)								

10.				irrational num $\frac{\sqrt{18}}{\sqrt{2}}$		$\frac{\sqrt{45}}{\sqrt{5}}$	(D)	$\frac{\sqrt{42}}{\sqrt{7}}$	(1)		
11.			to equal	such that $P = Q$ s, the wholes at (B) $P + x$	re equal	s"?		ustrates the Euclid's axiom = Q (D) $P \times x = Q$	(1)		
12.	(A)	2x - 6	(B)		(C)	0	(D)	6	(1)		
13.	Abscis (A)	ssa of all the po 0	oints on (B)	the y - axis is1	(C)	2	(D) ar	ny number	(1)		
14.	$In \Delta P$ (A)	QR, $\angle R = \angle P$ 4 cm	and QR (B)	= 4 cm and PR 5 cm	= 5 cm (C)	a. Then wha 2 cm	t is the len (D)	gth of PQ? 2.5 cm	(1)		
15.	If $x =$ (A)	$0.\overline{3}$, $y = 0.\overline{6}$	then with (B)	hat is the sum c 1	of x and (C)	y? 0.3̄	(D)	0. 09	(1)		
16.	Which (A)	of the followi Theorem	ng need (B)	s a proof? Axiom	(C)	Definition	u (D)	Postulate	(1)		
17.	The va (A)	alue of $249^2 - 2$ 12	248 ² is _ (B)		 (C)	487	(D)	497	(1)		
18.	Which (A)	points given b (-6, 8)	below do	$\begin{array}{c} \text{os not satisfy th} \\ \text{(B)} (6, -8) \end{array}$	-	ion 2x + 3y (C) (3,		(D) (-3,6)	(1)		
	 In the following questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (A) Both (A) and (R) are true and (R) is the correct explanation of A. (B) Both (A) and (R) are true but (R) is not the correct explanation of A. (C) (A) is true but (R) is false. 										
19.	 (D) (A) is false but (R) is true. (A) : Two angles' measures (a - 60°) and (123° - 2a). If each one is opposite to equal sides of an isosceles triangle, then the value of a is 61°. (R) : Sides opposite to equal angles of a triangle are equal. 										
20.	 (A) : An angle is 14° more than its complementary angle, then angle is 52°. (R) : Two angles are said to be supplementary if their sum of measure of angles is 180° 										

(**R**) : Two angles are said to be supplementary if their sum of measure of angles is 180°

SECTION - B

(2)

(2)

^{21.} If
$$\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-3}$$
, find x.

22. In which quadrant the following points lie? (3, 2), (2, -3), (-4, 4) and (-2, -3).

OR

Find the distance of the following points from the origin: P(3, 0), Q(0, -3), R(0, 5), S(-6, 0).

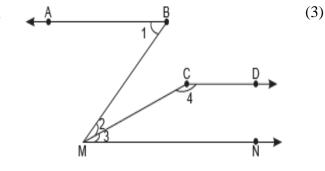
- 23. In the given figure AC = DC, CB = CE, then show that AB = DE. Write the axioms used to prove it.
- 24. The cost of a pen is three times the cost of a pencil. Write a linear equation in two variables to (2) represent this statement. Also write any two costs of pencil and pen.

OR

For what value of k, x = 2 and y = -1 is a solution of x + 3y - k = 0. Write the coordiante of point where line cuts to x-axis.

25. If $p(x) = 2x^3 - 6x^2 + ax + a$, and (x + 2) is a factor of p(x), then find a. (2)

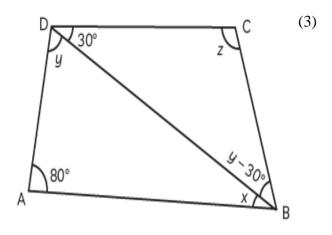
SECTION -C

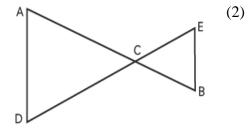

26. Seema donated a certain amount of money to a blind school. Her friend Manya wanted to know the (3) amount donated by her, but Ashima did not disclose the amount she donated, instead she gave her a hint that if $\left(x + \frac{1}{x}\right) = 7$ then the amount donated by her is $\left(x^3 + \frac{1}{x^3}\right)$. Find the amount donated by Seema to the blind school.

OR

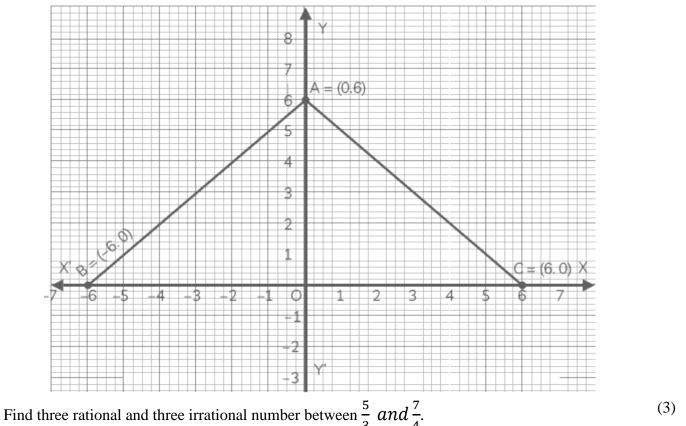
27. Find the value of $\frac{2+\sqrt{3}}{2-\sqrt{3}} + \frac{2-\sqrt{3}}{2+\sqrt{3}} + \frac{\sqrt{3}+1}{\sqrt{3}-1}$.

Express 18. $\overline{48}$ in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.


28. In the given figure, $\angle 1 = 60^\circ$, $\angle 2 = 25^\circ$, $\angle 3 = 35^\circ$ and $\angle 4 = 145^\circ$. Prove that AB || CD.

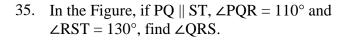


The angles of a triangle ABC are in the ratio 2: 3: 4. Find the largest angle of the triangle.

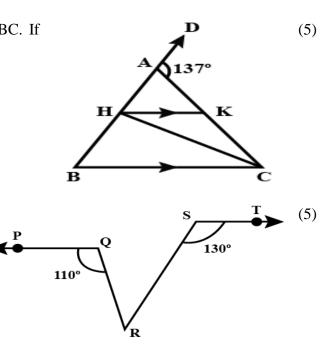

29. In the given figure if AB || DC and \angle BDC = 30°, \angle BAD = 80°, find $\angle x$, $\angle y$ and $\angle z$.

(3)

30. In the given graph, find the area of triangle ABC.

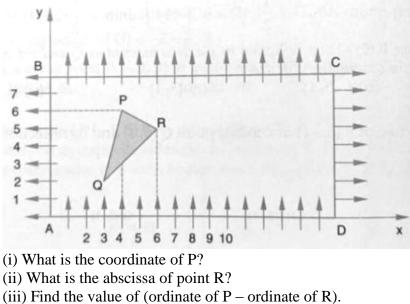


SECTION -D


32. If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 - 3abc = -25$. (5) OR

Find the value of a and b so that x + 1 and x - 1 are factors of $x^4 + ax^3 - 3x^2 + 2x + b$.

- 33. Write the linear equation y = 9x 7 in standard form and write the values of a, b, and c. Also check (5) that the points P (1, 2), Q (-1, -16) and R (0, -7) lie on the graph of the given linear equation?
- 34. In an isosceles triangle ABC, with AB = AC, the bisectors of ∠ B and ∠ C intersect each other at O. Join A to O. Show that : (i) OB = OC (ii) AO bisects ∠ A.
 - OR
- 34. In the given figure, AB = AC, CH = CB and $HK \parallel BC$. If $\angle CAX = 137^{\circ}$, then find $\angle CHK$.



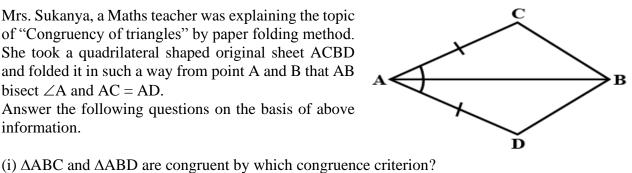
31.

SECTION - E

Class IX students of a school have been allotted a rectangular plot of land, adjacent to their school, 36. for gardening activity. Saplings of Ashoka are planted on the boundary at a distance of 1 m from each other.

There is a triangular PQR grassy lawn in the plot as shown in fig. The students are to sow seeds of plants flowering on the remaining area of the plot. Considering A as origin, AD along x axis and AB along yaxis. answer the following questions:

OR


What will be the coordinates of P, if D is taken as the origin, DA along negative direction of x-axis and DC along y-axis?

- 37. Prime Minister's National Relief Fund (also called PMNRF in short) is the fund raised to provide support for people affected by natural and man-made disasters. Natural disasters that are covered under this include flood, cyclone, earthquake etc. Man-made disasters that are included are major accidents, acid attacks, riots, etc. Two friends Sakhee and Maitree, together contributed > 500 towards Prime Minister's Relief Fund. Answer the following:
 - (i) If the contribution by Sakhee is x and by Maitree is y then, how to represent the above (1) situation in linear equations in two variables?
 - (ii) If Sakhee contributed ` 230, then how much was contributed by Maitree?
 - (iii) If Maitree and Sakhee contributed the amount in 2:3 ration respectively, then how much was (2)contributed by Sakhee?

OR

If they contributed the amount in 1:1 ratio, then how much is contributed by each?

38. Mrs. Sukanya, a Maths teacher was explaining the topic of "Congruency of triangles" by paper folding method. She took a quadrilateral shaped original sheet ACBD and folded it in such a way from point A and B that AB bisect $\angle A$ and AC = AD. Answer the following questions on the basis of above information.

(1)(1)

(2)

(1)

(1)

(2)

(1)

(iii) What is meant by CPCT?

(ii) Is $\angle ACB = \angle ADB$? If yes, why?

OR

(iii) If $\triangle ABC \cong \triangle ADB$ then BC = _____